[bookmark: 算法常用面试题汇总]算法常用面试题汇总
[bookmark: 说一下什么是二分法使用二分法时需要注意什么如何用代码实现]1.说一下什么是二分法？使用二分法时需要注意什么？如何用代码实现？
二分法查找（Binary Search）也称折半查找，是指当每次查询时，将数据分为前后两部分，再用中值和待搜索的值进行比较，如果搜索的值大于中值，则使用同样的方式（二分法）向后搜索，反之则向前搜索，直到搜索结束为止。
二分法使用的时候需要注意：二分法只适用于有序的数据，也就是说，数据必须是从小到大，或是从大到小排序的。
public class Lesson7_4 {
 public static void main(String[] args) {
 // 二分法查找
 int[] binaryNums = {1, 6, 15, 18, 27, 50};
 int findValue = 27;
 int binaryResult = binarySearch(binaryNums, 0, binaryNums.length - 1, findValue);
 System.out.println("元素第一次出现的位置（从0开始）：" + binaryResult);
 }
 /**
 * 二分查找，返回该值第一次出现的位置（下标从 0 开始）
 * @param nums 查询数组
 * @param start 开始下标
 * @param end 结束下标
 * @param findValue 要查找的值
 * @return int
 */
 private static int binarySearch(int[] nums, int start, int end, int findValue) {
 if (start <= end) {
 // 中间位置
 int middle = (start + end) / 2;
 // 中间的值
 int middleValue = nums[middle];
 if (findValue == middleValue) {
 // 等于中值直接返回
 return middle;
 } else if (findValue < middleValue) {
 // 小于中值，在中值之前的数据中查找
 return binarySearch(nums, start, middle - 1, findValue);
 } else {
 // 大于中值，在中值之后的数据中查找
 return binarySearch(nums, middle + 1, end, findValue);
 }
 }
 return -1;
 }
}
执行结果如下：
元素第一次出现的位置（从0开始）：4
[bookmark: 什么是斐波那契数列用代码如何实现]2.什么是斐波那契数列？用代码如何实现？
斐波那契数列（Fibonacci Sequence），又称黄金分割数列、因数学家列昂纳多·斐波那契（Leonardoda Fibonacci）以兔子繁殖为例子而引入，故又称为“兔子数列”，指的是这样一个数列：1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233，377，610，987，1597，2584，4181，6765，10946，17711…… 在数学上，斐波那契数列以如下被以递推的方法定义：F(1)=1，F(2)=1, F(n)=F(n-1)+F(n-2)（n>=3，n∈N*）在现代物理、准晶体结构、化学等领域，斐波纳契数列都有直接的应用。
斐波那契数列之所以又称黄金分割数列，是因为随着数列项数的增加，前一项与后一项之比越来越逼近黄金分割的数值 0.6180339887……
斐波那契数列指的是这样一个数列：1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233，377，610，987，1597，2584，4181，6765，10946，17711……
斐波那契数列的特征 ：第三项开始（含第三项）它的值等于前两项之和。
斐波那契数列代码实现示例，如下所示：
public class Lesson7_4 {
 public static void main(String[] args) {
 // 斐波那契数列
 int fibonacciIndex = 7;
 int fibonacciResult = fibonacci(fibonacciIndex);
 System.out.println("下标(从0开始)" + fibonacciIndex + "的值为：" + fibonacciResult);
 }
 /**
 * 斐波那契数列
 * @param index 斐波那契数列的下标（从0开始）
 * @return int
 */
 private static int fibonacci(int index) {
 if (index == 0 || index == 1) {
 return index;
 } else {
 return fibonacci(index - 1) + fibonacci(index - 2);
 }
 }
}
执行结果如下：
下标(从0开始)7的值为：13
[bookmark: section]
3.一般而言，兔子在出生两个月后，就有繁殖能力，一对兔子每个月能生出一对小兔子来。如果所有兔子都不死，那么一年以后可以繁殖多少对兔子？请使用代码实现。
先来分析一下，本题目
· 第一个月：有 1 对小兔子；
· 第二个月：小兔子变成大兔子；
· 第三个月：大兔子下了一对小兔子；
· 第四个月：大兔子又下了一对小兔子，上个月的一对小兔子变成了大兔子；
· ……
最后总结的规律如下列表所示：
	月数
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	…

	幼仔对数
	1
	0
	1
	1
	2
	3
	5
	8
	13
	21
	34
	55
	…

	成兔对数
	0
	1
	1
	2
	3
	5
	8
	13
	21
	34
	55
	89
	

	总对数
	1
	1
	2
	3
	5
	8
	13
	21
	34
	55
	89
	144
	

可以看出，兔子每个月的总对数刚好符合斐波那契数列，第 12 个月的时候，总共有 144 对兔子。 实现代码如下：
public class Lesson7_4 {
 public static void main(String[] args) {
 // 兔子的总对数
 int rabbitNumber = fibonacci(12);
 System.out.println("第 12 个月兔子的总对数是：" + rabbitNumber);
 }
 /**
 * 斐波那契数列
 * @param index 斐波那契数列的下标（从0开始）
 * @return int
 */
 private static int fibonacci(int index) {
 if (index == 0 || index == 1) {
 return index;
 } else {
 return fibonacci(index - 1) + fibonacci(index - 2);
 }
 }
}
执行结果如下：
第 12 个月兔子的总对数是：144
[bookmark: 什么是冒泡排序用代码如何实现]4.什么是冒泡排序？用代码如何实现？
冒泡排序（Bubble Sort）算法是所有排序算法中最简单、最基础的一个，它的实现思路是通过相邻数据的交换达到排序的目的。
冒泡排序的执行流程是：
· 对数组中相邻的数据，依次进行比较；
· 如果前面的数据大于后面的数据，则把前面的数据交换到后面。经过一轮比较之后，就能把数组中最大的数据排到数组的最后面了；
· 再用同样的方法，把剩下的数据逐个进行比较排序，最后得到就是从小到大排序好的数据。
冒泡排序算法代码实现，如下所示：
public class Lesson7_4 {
 public static void main(String[] args) {
 // 冒泡排序调用
 int[] bubbleNums = {132, 110, 122, 90, 50};
 System.out.println("排序前：" + Arrays.toString(bubbleNums));
 bubbleSort(bubbleNums);
 System.out.println("排序后：" + Arrays.toString(bubbleNums));
 }
 /**
 * 冒泡排序
 */
 private static void bubbleSort(int[] nums) {
 int temp;
 for (int i = 1; i < nums.length; i++) {
 for (int j = 0; j < nums.length - i; j++) {
 if (nums[j] > nums[j + 1]) {
 temp = nums[j];
 nums[j] = nums[j + 1];
 nums[j + 1] = temp;
 }
 }
 System.out.print("第" + i + "次排序：");
 System.out.println(Arrays.toString(nums));
 }
 }
}
执行结果如下：
排序前：[132, 110, 122, 90, 50]
第1次排序：[110, 122, 90, 50, 132]
第2次排序：[110, 90, 50, 122, 132]
第3次排序：[90, 50, 110, 122, 132]
第4次排序：[50, 90, 110, 122, 132]
排序后：[50, 90, 110, 122, 132]
[bookmark: 什么是选择排序用代码如何实现]5.什么是选择排序？用代码如何实现？
选择排序（Selection Sort）算法也是比较简单的排序算法，其实现思路是每一轮循环找到最小的值，依次排到数组的最前面，这样就实现了数组的有序排列。
比如，下面是一组数据使用选择排序的执行流程：
· 初始化数据：18, 1, 6, 27, 15
· 第一次排序：1, 18, 6, 27, 15
· 第二次排序：1, 6, 18, 27, 15
· 第三次排序：1, 6, 15, 27, 18
· 第四次排序：1, 6, 15, 18, 27
选择排序算法代码实现，如下所示：
public class Lesson7_4 {
 public static void main(String[] args) {
 // 选择排序调用
 int[] selectNums = {18, 1, 6, 27, 15};
 System.out.println("排序前：" + Arrays.toString(selectNums));
 selectSort(selectNums);
 System.out.println("排序后：" + Arrays.toString(selectNums));
 }
 /**
 * 选择排序
 */
 private static void selectSort(int[] nums) {
 int index;
 int temp;
 for (int i = 0; i < nums.length - 1; i++) {
 index = i;
 for (int j = i + 1; j < nums.length; j++) {
 if (nums[j] < nums[index]) {
 index = j;
 }
 }
 if (index != i) {
 temp = nums[i];
 nums[i] = nums[index];
 nums[index] = temp;
 }
 System.out.print("第" + i + "次排序：");
 System.out.println(Arrays.toString(nums));
 }
 }
}
执行结果如下：
排序前：[18, 1, 6, 27, 15]
第0次排序：[1, 18, 6, 27, 15]
第1次排序：[1, 6, 18, 27, 15]
第2次排序：[1, 6, 15, 27, 18]
第3次排序：[1, 6, 15, 18, 27]
排序后：[1, 6, 15, 18, 27]
[bookmark: 什么是插入排序用代码如何实现]6.什么是插入排序？用代码如何实现？
插入排序（Insertion Sort）算法是指依次把当前循环的元素，通过对比插入到合适位置的排序算法。 比如，下面是一组数据使用插入排序的执行流程：
· 初始化数据：18, 1, 6, 27, 15
· 第一次排序：1, 18, 6, 27, 15
· 第二次排序：1, 6, 18, 27, 15
· 第三次排序：1, 6, 18, 27, 15
· 第四次排序：1, 6, 15, 18, 27
插入排序算法代码实现，如下所示：
public class Lesson7_4 {
 public static void main(String[] args) {
 // 插入排序调用
 int[] insertNums = {18, 1, 6, 27, 15};
 System.out.println("排序前：" + Arrays.toString(insertNums));
 insertSort(insertNums);
 System.out.println("排序后：" + Arrays.toString(insertNums));
 }
 /**
 * 插入排序
 */
 private static void insertSort(int[] nums) {
 int i, j, k;
 for (i = 1; i < nums.length; i++) {
 k = nums[i];
 j = i - 1;
 // 对 i 之前的数据，给当前元素找到合适的位置
 while (j >= 0 && k < nums[j]) {
 nums[j + 1] = nums[j];
 // j-- 继续往前寻找
 j--;
 }
 nums[j + 1] = k;
 System.out.print("第" + i + "次排序：");
 System.out.println(Arrays.toString(nums));
 }
 }
}
执行结果如下：
排序前：[18, 1, 6, 27, 15]
第1次排序：[1, 18, 6, 27, 15]
第2次排序：[1, 6, 18, 27, 15]
第3次排序：[1, 6, 18, 27, 15]
第4次排序：[1, 6, 15, 18, 27]
排序后：[1, 6, 15, 18, 27]
[bookmark: 什么是快速排序用代码如何实现]7.什么是快速排序？用代码如何实现？
快速排序（Quick Sort）算法和冒泡排序算法类似，都是基于交换排序思想实现的，快速排序算法是对冒泡排序算法的改进，从而具有更高的执行效率。
快速排序是通过多次比较和交换来实现排序的执行流程如下：
· 首先设定一个分界值，通过该分界值把数组分为左右两个部分；
· 将大于等于分界值的元素放到分界值的右边，将小于分界值的元素放到分界值的左边；
· 然后对左右两边的数据进行独立的排序，在左边数据中取一个分界值，把小于分界值的元素放到分界值的左边，大于等于分界值的元素，放到数组的右边；右边的数据也执行同样的操作；
· 重复上述操作，当左右各数据排序完成后，整个数组也就完成了排序。
快速排序算法代码实现，如下所示：
public class Lesson7_4 {
 public static void main(String[] args) {
 // 快速排序调用
 int[] quickNums = {18, 1, 6, 27, 15};
 System.out.println("排序前：" + Arrays.toString(quickNums));
 quickSort(quickNums, 0, quickNums.length - 1);
 System.out.println("排序后：" + Arrays.toString(quickNums));
 }
 /**
 * 快速排序
 */
 private static void quickSort(int[] nums, int left, int right) {
 int f, t;
 int ltemp = left;
 int rtemp = right;
 // 分界值
 f = nums[(left + right) / 2];
 while (ltemp < rtemp) {
 while (nums[ltemp] < f) {
 ++ltemp;
 }
 while (nums[rtemp] > f) {
 --rtemp;
 }
 if (ltemp <= rtemp) {
 t = nums[ltemp];
 nums[ltemp] = nums[rtemp];
 nums[rtemp] = t;
 --rtemp;
 ++ltemp;
 }
 }
 if (ltemp == rtemp) {
 ltemp++;
 }
 if (left < rtemp) {
 // 递归调用
 quickSort(nums, left, ltemp - 1);
 }
 if (right > ltemp) {
 // 递归调用
 quickSort(nums, rtemp + 1, right);
 }
 }
}
执行结果如下：
排序前：[18, 1, 6, 27, 15]
排序后：[1, 6, 15, 18, 27]
[bookmark: 什么是堆排序用代码如何实现]8.什么是堆排序？用代码如何实现？
堆排序（Heap Sort）算法是利用堆结构和二叉树的一些特性来完成排序的。 堆结构是一种树结构，准确来说是一个完全二叉树。完全二叉树每个节点应满足以下条件：
· 如果按照从小到大的顺序排序，要求非叶节点的数据要大于等于，其左、右子节点的数据；
· 如果按照从大到小的顺序排序，要求非叶节点的数据小于等于，其左、右子节点的数据。
可以看出，堆结构对左、右子节点的大小没有要求，只规定叶节点要和子节点（左、右）的数据满足大小关系。
比如，下面是一组数据使用堆排序的执行流程：
[image: https://images.gitbook.cn/98e41070-e7de-11e9-a117-ebe8fd595e2b]
1
堆排序算法代码实现，如下所示：
public class Lesson7_4 {
 public static void main(String[] args) {
 // 堆排序调用
 int[] heapNums = {18, 1, 6, 27, 15};
 System.out.println("堆排序前：" + Arrays.toString(heapNums));
 heapSort(heapNums, heapNums.length);
 System.out.println("堆排序后：" + Arrays.toString(heapNums));
 }
 /**
 * 堆排序
 * @param nums 待排序数组
 * @param n 堆大小
 */
 private static void heapSort(int[] nums, int n) {
 int i, j, k, temp;
 // 将 nums[0,n-1] 建成大根堆
 for (i = n / 2 - 1; i >= 0; i--) {
 // 第 i 个节点，有右子树
 while (2 * i + 1 < n) {
 j = 2 * i + 1;
 if ((j + 1) < n) {
 // 右左子树小于右子树，则需要比较右子树
 if (nums[j] < nums[j + 1]) {
 // 序号增加 1，指向右子树
 j++;
 }
 }
 if (nums[i] < nums[j]) {
 // 交换数据
 temp = nums[i];
 nums[i] = nums[j];
 nums[j] = temp;
 // 堆被破坏，重新调整
 i = j;
 } else {
 // 左右子节点均大，则堆未被破坏，不需要调整
 break;
 }
 }
 }
 for (i = n - 1; i > 0; i--) {
 // 与第 i 个记录交换
 temp = nums[0];
 nums[0] = nums[i];
 nums[i] = temp;
 k = 0;
 // 第 i 个节点有右子树
 while (2 * k + 1 < i) {
 j = 2 * k + 1;
 if ((j + 1) < i) {
 // 右左子树小于右子树，则需要比较右子树
 if (nums[j] < nums[j + 1]) {
 // 序号增加 1，指向右子树
 j++;
 }
 }
 if (nums[k] < nums[j]) {
 // 交换数据
 temp = nums[k];
 nums[k] = nums[j];
 nums[j] = temp;
 // 堆被破坏，重新调整
 k = j;
 } else {
 // 左右子节点均大，则堆未被破坏，不需要调整
 break;
 }
 }
 // 输出每步排序结果
 System.out.print("第" + (n - i) + "次排序：");
 System.out.println(Arrays.toString(nums));
 }
 }
}
执行结果如下：
堆排序前：[18, 1, 6, 27, 15]
第1次排序：[18, 15, 6, 1, 27]
第2次排序：[15, 1, 6, 18, 27]
第3次排序：[6, 1, 15, 18, 27]
第4次排序：[1, 6, 15, 18, 27]
堆排序后：[1, 6, 15, 18, 27]
[bookmark: 总结]总结
对于应届毕业生来说，算法是大厂必考的一大重点科目，因为对于没有太多实际项目经验的应届生来说，考察的重点是逻辑思考能力和学习力，这两项能力的掌握情况都体现在算法上，因此除了本文的这些内容外，对于校招的同学来说还需要配合 LeeCode，来把算法这一关的能力构建起来，对于社招的同学来说，一般算法问到的可能性相对比较少，最常见的算法问题应该就是对冒泡和快排的掌握情况了，对于这两个算法来说，最好能到达手写代码的情况。
点击此处下载本文源码
[bookmark: 更多资源下载交流请加微信morstrong加入永久会员网盘更新更快捷]更多资源下载交流请加微信：Morstrong,加入永久会员,网盘更新更快捷！
[bookmark: 本资源由微信公众号光明顶一号提供支持]本资源由微信公众号：光明顶一号，提供支持
rId29.png
IR A—MTAZ

&Y remw

TREHFHIE:

Btz @ B @ B

EERAE 27, R o Bt RAR 15, SR
4 =) PBEEAM 18, Bk
BRI 15808 | [6BA—MBAIE ozE
i B BAB A~

