
第2讲 | Exception和Error有什么区别？
2018-05-08 杨晓峰

Java核心技术36讲 进入课程

讲述：黄洲君
时长 11:14 大小 5.15M

世界上存在永远不会出错的程序吗？也许这只会出现在程序员的梦中。随着编程语言和软件

的诞生，异常情况就如影随形地纠缠着我们，只有正确处理好意外情况，才能保证程序的可

靠性。

Java 语言在设计之初就提供了相对完善的异常处理机制，这也是 Java 得以大行其道的原因

之一，因为这种机制大大降低了编写和维护可靠程序的门槛。如今，异常处理机制已经成为

现代编程语言的标配。

今天我要问你的问题是，请对比 Exception 和 Error，另外，运行时异常与一般异常有什么

区别？

典型回答





 下载APP 

加微信：642945106 发送“赠送”领取赠送精品课程
发数字“2”获取众筹列表

Exception 和 Error 都是继承了 Throwable 类，在 Java 中只有 Throwable 类型的实例才

可以被抛出（throw）或者捕获（catch），它是异常处理机制的基本组成类型。

Exception 和 Error 体现了 Java 平台设计者对不同异常情况的分类。Exception 是程序正

常运行中，可以预料的意外情况，可能并且应该被捕获，进行相应处理。

Error 是指在正常情况下，不大可能出现的情况，绝大部分的 Error 都会导致程序（比如

JVM 自身）处于非正常的、不可恢复状态。既然是非正常情况，所以不便于也不需要捕

获，常见的比如 OutOfMemoryError 之类，都是 Error 的子类。

Exception 又分为可检查（checked）异常和不检查（unchecked）异常，可检查异常在

源代码里必须显式地进行捕获处理，这是编译期检查的一部分。前面我介绍的不可查的

Error，是 Throwable 不是 Exception。

不检查异常就是所谓的运行时异常，类似 NullPointerException、

ArrayIndexOutOfBoundsException 之类，通常是可以编码避免的逻辑错误，具体根据需

要来判断是否需要捕获，并不会在编译期强制要求。

考点分析

分析 Exception 和 Error 的区别，是从概念角度考察了 Java 处理机制。总的来说，还处于

理解的层面，面试者只要阐述清楚就好了。

我们在日常编程中，如何处理好异常是比较考验功底的，我觉得需要掌握两个方面。

第一，理解 Throwable、Exception、Error 的设计和分类。比如，掌握那些应用最为广

泛的子类，以及如何自定义异常等。

很多面试官会进一步追问一些细节，比如，你了解哪些 Error、Exception 或者

RuntimeException？我画了一个简单的类图，并列出来典型例子，可以给你作为参考，至

少做到基本心里有数。

其中有些子类型，最好重点理解一下，比如 NoClassDefFoundError 和

ClassNotFoundException 有什么区别，这也是个经典的入门题目。

第二，理解 Java 语言中操作 Throwable 的元素和实践。掌握最基本的语法是必须的，如

try-catch-finally 块，throw、throws 关键字等。与此同时，也要懂得如何处理典型场

景。

异常处理代码比较繁琐，比如我们需要写很多千篇一律的捕获代码，或者在 finally 里面做

一些资源回收工作。随着 Java 语言的发展，引入了一些更加便利的特性，比如 try-with-

resources 和 multiple catch，具体可以参考下面的代码段。在编译时期，会自动生成相应

的处理逻辑，比如，自动按照约定俗成 close 那些扩展了 AutoCloseable 或者 Closeable

的对象。

1

2

3

4

5

6

try (BufferedReader br = new BufferedReader(…);
 BufferedWriter writer = new BufferedWriter(…)) {// Try-with-resources
// do something
catch (IOException | XEception e) {// Multiple catch
 // Handle it
}

复制代码

防止断
更 请务

必加

首发微
信：1

71614
3665

知识扩展

前面谈的大多是概念性的东西，下面我来谈些实践中的选择，我会结合一些代码用例进行分

析。

先开看第一个吧，下面的代码反映了异常处理中哪些不当之处？

这段代码虽然很短，但是已经违反了异常处理的两个基本原则。

第一，尽量不要捕获类似 Exception 这样的通用异常，而是应该捕获特定异常，在这里是

Thread.sleep() 抛出的 InterruptedException。

这是因为在日常的开发和合作中，我们读代码的机会往往超过写代码，软件工程是门协作的

艺术，所以我们有义务让自己的代码能够直观地体现出尽量多的信息，而泛泛的 Exception

之类，恰恰隐藏了我们的目的。另外，我们也要保证程序不会捕获到我们不希望捕获的异

常。比如，你可能更希望 RuntimeException 被扩散出来，而不是被捕获。

进一步讲，除非深思熟虑了，否则不要捕获 Throwable 或者 Error，这样很难保证我们能

够正确程序处理 OutOfMemoryError。

第二，不要生吞（swallow）异常。这是异常处理中要特别注意的事情，因为很可能会导

致非常难以诊断的诡异情况。

生吞异常，往往是基于假设这段代码可能不会发生，或者感觉忽略异常是无所谓的，但是千

万不要在产品代码做这种假设！

1

2

3

4

5

6

7

try {
 // 业务代码

 // …
 Thread.sleep(1000L);
} catch (Exception e) {
 // Ignore it
}

复制代码

如果我们不把异常抛出来，或者也没有输出到日志（Logger）之类，程序可能在后续代码

以不可控的方式结束。没人能够轻易判断究竟是哪里抛出了异常，以及是什么原因产生了异

常。

再来看看第二段代码

这段代码作为一段实验代码，它是没有任何问题的，但是在产品代码中，通常都不允许这样

处理。你先思考一下这是为什么呢？

我们先来看看printStackTrace()的文档，开头就是“Prints this throwable and its

backtrace to the standard error stream”。问题就在这里，在稍微复杂一点的生产系

统中，标准出错（STERR）不是个合适的输出选项，因为你很难判断出到底输出到哪里去

了。

尤其是对于分布式系统，如果发生异常，但是无法找到堆栈轨迹（stacktrace），这纯属是

为诊断设置障碍。所以，最好使用产品日志，详细地输出到日志系统里。

我们接下来看下面的代码段，体会一下Throw early, catch late 原则。

1

2

3

4

5

6

try {
 // 业务代码

 // …
} catch (IOException e) {
 e.printStackTrace();
}

复制代码

1

2

3

4

5

public void readPreferences(String fileName){
 //...perform operations...
 InputStream in = new FileInputStream(fileName);
 //...read the preferences file...
}

复制代码

https://docs.oracle.com/javase/9/docs/api/java/lang/Throwable.html#printStackTrace--

如果 fileName 是 null，那么程序就会抛出 NullPointerException，但是由于没有第一时

间暴露出问题，堆栈信息可能非常令人费解，往往需要相对复杂的定位。这个 NPE 只是作

为例子，实际产品代码中，可能是各种情况，比如获取配置失败之类的。在发现问题的时

候，第一时间抛出，能够更加清晰地反映问题。

我们可以修改一下，让问题“throw early”，对应的异常信息就非常直观了。

至于“catch late”，其实是我们经常苦恼的问题，捕获异常后，需要怎么处理呢？最差的

处理方式，就是我前面提到的“生吞异常”，本质上其实是掩盖问题。如果实在不知道如何

处理，可以选择保留原有异常的 cause 信息，直接再抛出或者构建新的异常抛出去。在更

高层面，因为有了清晰的（业务）逻辑，往往会更清楚合适的处理方式是什么。

有的时候，我们会根据需要自定义异常，这个时候除了保证提供足够的信息，还有两点需要

考虑：

业界有一种争论（甚至可以算是某种程度的共识），Java 语言的 Checked Exception 也许

是个设计错误，反对者列举了几点：

1

2

3

4

5

6

public void readPreferences(String filename) {
 Objects. requireNonNull(filename);
 //...perform other operations...
 InputStream in = new FileInputStream(filename);
 //...read the preferences file...
}

复制代码

是否需要定义成 Checked Exception，因为这种类型设计的初衷更是为了从异常情况恢

复，作为异常设计者，我们往往有充足信息进行分类。

在保证诊断信息足够的同时，也要考虑避免包含敏感信息，因为那样可能导致潜在的安全

问题。如果我们看 Java 的标准类库，你可能注意到类似 java.net.ConnectException，

出错信息是类似“ Connection refused (Connection refused)”，而不包含具体的机

器名、IP、端口等，一个重要考量就是信息安全。类似的情况在日志中也有，比如，用户

数据一般是不可以输出到日志里面的。

拼课微
信：1

71614
3665

很多开源项目，已经采纳了这种实践，比如 Spring、Hibernate 等，甚至反映在新的编程

语言设计中，比如 Scala 等。 如果有兴趣，你可以参考：

http://literatejava.com/exceptions/checked-exceptions-javas-biggest-mistake/。

当然，很多人也觉得没有必要矫枉过正，因为确实有一些异常，比如和环境相关的 IO、网

络等，其实是存在可恢复性的，而且 Java 已经通过业界的海量实践，证明了其构建高质量

软件的能力。我就不再进一步解读了，感兴趣的同学可以点击链接，观看 Bruce Eckel 在

2018 年全球软件开发大会 QCon 的分享 Failing at Failing: How and Why We’ve

Been Nonchalantly Moving Away From Exception Handling。

我们从性能角度来审视一下 Java 的异常处理机制，这里有两个可能会相对昂贵的地方：

所以，对于部分追求极致性能的底层类库，有种方式是尝试创建不进行栈快照的

Exception。这本身也存在争议，因为这样做的假设在于，我创建异常时知道未来是否需要

堆栈。问题是，实际上可能吗？小范围或许可能，但是在大规模项目中，这么做可能不是个

理智的选择。如果需要堆栈，但又没有收集这些信息，在复杂情况下，尤其是类似微服务这

种分布式系统，这会大大增加诊断的难度。

当我们的服务出现反应变慢、吞吐量下降的时候，检查发生最频繁的 Exception 也是一种

思路。关于诊断后台变慢的问题，我会在后面的 Java 性能基础模块中系统探讨。

Checked Exception 的假设是我们捕获了异常，然后恢复程序。但是，其实我们大多数

情况下，根本就不可能恢复。Checked Exception 的使用，已经大大偏离了最初的设计

目的。

Checked Exception 不兼容 functional 编程，如果你写过 Lambda/Stream 代码，相信

深有体会。

try-catch 代码段会产生额外的性能开销，或者换个角度说，它往往会影响 JVM 对代码

进行优化，所以建议仅捕获有必要的代码段，尽量不要一个大的 try 包住整段的代码；与

此同时，利用异常控制代码流程，也不是一个好主意，远比我们通常意义上的条件语句

（if/else、switch）要低效。

Java 每实例化一个 Exception，都会对当时的栈进行快照，这是一个相对比较重的操

作。如果发生的非常频繁，这个开销可就不能被忽略了。

http://literatejava.com/exceptions/checked-exceptions-javas-biggest-mistake/
http://v.qq.com/x/page/d0635rf5x0o.html

今天，我从一个常见的异常处理概念问题，简单总结了 Java 异常处理的机制。并结合代

码，分析了一些普遍认可的最佳实践，以及业界最新的一些异常使用共识。最后，我分析了

异常性能开销，希望对你有所帮助。

一课一练

关于今天我们讨论的题目你做到心中有数了吗？可以思考一个问题，对于异常处理编程，不

同的编程范式也会影响到异常处理策略，比如，现在非常火热的反应式编程（Reactive

Stream），因为其本身是异步、基于事件机制的，所以出现异常情况，决不能简单抛出

去；另外，由于代码堆栈不再是同步调用那种垂直的结构，这里的异常处理和日志需要更加

小心，我们看到的往往是特定 executor 的堆栈，而不是业务方法调用关系。对于这种情

况，你有什么好的办法吗？

请你在留言区分享一下你的解决方案，我会选出经过认真思考的留言，送给你一份学习鼓励

金，欢迎你与我一起讨论。

你的朋友是不是也在准备面试呢？你可以“请朋友读”，把今天的题目分享给好友，或许你

能帮到他。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 第1讲 | 谈谈你对Java平台的理解？

下一篇 第3讲 | 谈谈final、finally、 finalize有什么不同？

迷途知返
2018-05-17

 615

我比较菜 在听到“NoClassDefFoundError 和 ClassNotFoundException 有什么区别，
这也是个经典的入门题目。“ 这一段的时候 我以为会讲这两个的区别呢 我觉得这个区别
详细讲讲 就是干货！文章总结性的语言比较多 并不具体

展开

毛毛熊
2018-05-21

 324

NoClassDefFoundError是一个错误(Error)，而ClassNOtFoundException是一个异常，
在Java中对于错误和异常的处理是不同的，我们可以从异常中恢复程序但却不应该尝试从
错误中恢复程序。
ClassNotFoundException的产生原因：
 …
展开

公号-代码...
2018-05-08

 201

在Java世界里，异常的出现让我们编写的程序运行起来更加的健壮，同时为程序在调试、
运行期间发生的一些意外情况，提供了补救机会；即使遇到一些严重错误而无法弥补，异
常也会非常忠实的记录所发生的这一切。以下是文章心得感悟:

1 不要推诿或延迟处理异常，就地解决最好，并且需要实实在在的进行处理，而不是只捕…
展开

adrian-js...
2018-09-21

 101

假如你开车上山，车坏了，你拿出工具箱修一修，修好继续上路（Exception被捕获，从异
常中恢复，继续程序的运行），车坏了，你不知道怎么修，打电话告诉修车行，告诉你是

精选留言 (151)  写留言

什么问题，要车行过来修。（在当前的逻辑背景下，你不知道是怎么样的处理逻辑，把异
常抛出去到更高的业务层来处理）。你打电话的时候，要尽量具体，不能只说我车动不了
了。那修车行很难定位你的问题。（要补货特定的异常，不能捕获类似Exception的通用…
展开

作者回复: 形象！

coder王
2018-05-08

 70

留言中凸显高手。

展开

钱宇祥
2018-05-08

 62

1.异常：这种情况下的异常，可以通过完善任务重试机制，当执行异常时，保存当前任务
信息加入重试队列。重试的策略根据业务需要决定，当达到重试上限依然无法成功，记录
任务执行失败，同时发出告警。
2.日志：类比消息中间件，处在不同线程之间的同一任务，简单高效一点的做法可能是用
traceId/requestId串联。有些日志系统本身支持MDC/NDC功能，可以串联相关联的日…
展开

作者回复: 很棒的总结

欧阳田
2018-05-08

 45

1.Error:系统错误，虚拟机出错，我们处理不了，也不需要我们来处理。
2.Exception，可以捕获的异常，且作出处理。也就是要么捕获异常并作出处理，要么继续
抛出异常。
3.RuntimeException，经常性出现的错误，可以
捕获，并作出处理，可以不捕获，也可以不用抛出。ArrayIndexOutOfBoundsExceptio…
展开

约书亚  41

2018-05-08

先说问题外的话，Java的checked exception总是被诟病，可我是从C#转到Java开发上来
的，中间经历了go，体验过scala。我觉得Java这种机制并没有什么不好，不同的语言体验
下来，错误与异常机制真是各有各的好处和槽点，而Java我觉得处在中间，不极端。当然
老师提到lambda这确实是个问题...
至于响应式编程，我可以泛化为异步编程的概念嘛？一般各种异步编程框架都会对异常…
展开

作者回复: 是的，非常棒的总结，归根结底我们需要一堆人合作构建各种规模的程序，Java异常处

理有槽点，但实践证明了其能力；

类似第二点，我个人也觉得可以泛化为异步编程的概念，比如Future Stage之类使用

ExecutionException的思路

DavidWhom...
2018-05-14

 37

提出面试问题，却没有较好的回答，很难受(;_;)

展开

飞云
2018-05-08

 23

能不能讲下怎么捕捉整个项目的全局异常，说实话前两篇额干货都不多，希望点更实在的
干货

作者回复: 谢谢建议，极客课程设计是尽量偏向通用场景，我们掉坑里，往往都不是在高大上的地

方；全局异常Spring MVC的方式就很实用；对与干货，你是希望特定场景，特定问题吗？说说你

的想法

猿工匠
2018-05-08

 23

每天早上学习与复习一下😁😁

展开

小绵羊拉拉  18

2018-05-08

看完文章简单认识一些浅层的意思 但是我关注的 比如try catch源码实现 涉及 以及 文章中
提到 try catch 产生 堆栈快照 影响jvm性能等 一笔带过 觉得不太过瘾。只是对于阿里的面
试 读懂这篇文章还是不够。还希望作者从面试官的角度由浅入深的剖析异常处理 最后还是
谢谢分享

展开

作者回复: 谢谢反馈，如果不做jvm或非常底层开发，个人没有看到这些细节的实际意义，如果非

要问可以鄙视他：-）

创建Throwable因为要调用native方法fillInStacktrace；至于try catch finally，jvms第三章有细

节，也可以自己写一段程序，用javap反编译看看 goto、异常表等等

Alphabet
2018-05-10

 15

老师可以在文章末尾推荐一些基础和进阶的Java学习书籍或是资料吗？最好是使用较新版
本jdk的

涟漪
2018-05-09

 14

非常感谢作者以及评论中的高手们！我很喜欢作者能够精选评论。

James
2018-05-08

 10

个人觉得checked exception / unchecked exception 分别翻译为 检查型异常/非检查型
异常 更加好理解。
可检查异常容易被理解为可以不检查。

展开

作者回复: 有道理，谢谢指出

拉灯灯
2018-05-16

 8

error指的是不可预料的错误，可能会导致程序宕机；而exception指的是在程序运行中可

以预见的异常，而异常分为检查异常与一般异常，检查异常需要在程序中显示捕获并处
理，一般异常可以通过程序编码来进行处理，比如数组越界，空指针等；异常处理的两大
基本原则：不要捕获泛泛的异常信息，比如直接捕获Exception，这样会在增加代码阅读难
度；不要生吞异常；打印异常信息是一个比较重的操作，会导致程序变慢；try catch最…
展开

过河
2018-05-08

 8

对于日志里面我们看到的往往是特定 executor 的堆栈，而不是业务方法调用关系这种情
况，我在公司推行的是自定义异常，自定义的异常有一个错误码，这个错误码需要细到某
个业务的某个方法的某种错，这样排查问题会很方便，但是写的时候就比较麻烦，文档也
比较多

展开

作者回复: 嗯，有些类似trace id的思路，构建树形堆栈也有帮助

Jerry银银
2018-05-08

 8

由于反应式编程是异步的，基于事件的，所以异常肯定不能直接抛出，如果直接抛出，随
便一个异常都会引起程序崩溃，直接影响到对后续事件处理。个人觉得一种处理方式是：
当某个事件发生异常时，为了不影响对后续事件的处理，可以对当前发生异常的事件进行
拦截处理，然后将异常信息发送出去。
 …
展开

五年
2018-05-24

 7

老师讲的很好 😄
不过理论讲过之后很容易忘 老师可以开一个github的代码库，将课程的最佳实践还有反例
放进去吗

展开

作者回复: 有打算，最近出差，黑白颠倒，回去找机会弄下

三军
2018-05-10

 7

Java语言规范将派生于Error类或RuntimeException类的所有异常称为未检查
（unchecked）异常，所有其他的异常成为已检查（checked）异常。

编译器将检查是否为所有的已检查异常提供了异常处理器。
 …
展开

