[bookmark: 类与-object-的应用-面试题]类与 Object 的应用 + 面试题
[bookmark: 类介绍]类介绍
Java 程序是由若干个类组成的，类也是面向对象编程思想的具体实现。
以下为类的基本使用：
public class Cat {
 // 私有属性
 private String name;
 private int age;
 // 构造方法
 public Cat() {
 }
 // 普通方法
 public void eat() {
 System.out.println("吃吃吃");
 }
 // 对外包装属性
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
 public int getAge() {
 return age;
 }
 public void setAge(int age) {
 this.age = age;
 }
}
[bookmark: 类引用]类引用
当我们需要使用不同包下的类时，就需要使用 import 导入包或类，这个时候才能正常使用。例如，我们要使用 java.util 下的 ArrayList 就必须使用 import java.util.ArrayList，请参考以下代码：
// 导入 ArrayList 类
import java.util.ArrayList;
class importTest {
 public static void main(String[] args) {
 ArrayList list = new ArrayList();
 }
}
类引用的高级用法
import 还可以导入静态方法和静态域的功能，比如以下代码：
// 导入 static 静态域的功能
import static java.lang.System.*;
class staticTest {
 public static void main(String[] args) {
 out.println("hi");
 }
}
以上代码也可以顺利的执行，这也是 import 好玩的一个地方。
[bookmark: 访问修饰符]访问修饰符
在 Java 中访问修饰符有以下四种：
· public
· protected
· 默认
· private
具体介绍如下表：
	访问级别
	访问控制修饰符
	同类
	同包
	子类
	不同的包

	公开
	public
	✓
	✓
	✓
	✓

	受保护
	protected
	✓
	✓
	✓
	×

	默认
	没有访问修饰符
	✓
	✓
	×
	×

	私有
	private
	✓
	×
	×
	×

（1）在开发中要尽可能地加上访问修饰符（提高程序的可读性）；
（2）无特殊要求的情况下，类内部的变量应该设置为私有的（防止外部篡改）。
[bookmark: 构造方法]构造方法
构造方法也叫构造器或构造函数，它的作用是对类进行初始化，比如以下代码：
class Cat {
 // 构造方法
 public Cat(String name, int age) {
 this.name = name;
 this.age = age;
 }
 public static void main(String[] args) {
 Cat cat = new Cat("喵星人",2);
 System.out.println(cat.getName());
 System.out.println(cat.getAge());
 }
 private String name;
 private int age;
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
 public int getAge() {
 return age;
 }
 public void setAge(int age) {
 this.age = age;
 }
}
以上代码执行结果如下：
喵星人
2
构造方法五大原则：
1. 构造方法必须与类同名；
1. 构造方法的参数可以没有或者有多个；
1. 构造方法不能有返回值；
1. 每个类可以有一个或多个构造方法；
1. 构造方法总是伴随着 new 操作一起使用。
[bookmark: 继承]继承
用法：使用 extends 关键字来实现类的继承，示例代码如下：
class Animal {
 public void eat() {
 System.out.println("Animal");
 }
}
class Cat extends Animal {
}
public class eTest implements Cloneable {
 public static void main(String[] args) {
 Animal cat = new Cat();
 cat.eat();
 }
}
以上程序执行结果：Animal
继承使用技巧：
· 将公共的变量或者方法提取到超类中；
· 除非所有的方法都有继承的意义，否则不要使用继承；
· 在方法覆盖时不要改变原有方法的预期行为。
[bookmark: object]Object
Object 类是 Java 中的一个特殊类，它是所有类的父类，Java 中的类都直接或间接的继承自 Object 类。
Object 类的常用方法如下：
· equals()：对比两个对象是否相同
· getClass()：返回一个对象的运行时类
· hashCode()：返回该对象的哈希码值
· toString()：返回该对象的字符串描述
· wait()：使当前的线程等待
· notify()：唤醒在此对象监视器上等待的单个线程
· notifyAll()：唤醒在此对象监视器上等待的所有线程
· clone()：克隆一个新对象
关于更多 Object 的内容，如克隆（深克隆、浅克隆）、线程等待和唤醒，会在后面的章节中详细介绍。
[bookmark: 相关面试题]相关面试题
[bookmark: 类的组成部分有哪些]1. 类的组成部分有哪些？
答：在 Java 语言中，类主要是由方法和变量两部分组成。
[bookmark: 类与对象有哪些区别]2. 类与对象有哪些区别？
答：类是一个抽象的概念，是对某一事物的描述；而对象是类的实例，是实实在在存在的个体。比如，“人”就是一个类（一个概念），而老王（王磊）就是实实在在的一个“对象”。
[bookmark: java-中可以多继承吗]3. Java 中可以多继承吗？
答：Java 中只能单继承，但可以实现多接口。
[bookmark: java-中为什么不能实现多继承]4. Java 中为什么不能实现多继承？
答：从技术的实现角度来说，是为了降低编程的复杂性。假设 A 类中有一个 m() 方法，B 类中也有一个 m() 方法，如果 C 类同时继承 A 类和 B 类，那调用 C 类的 m() 方法时就会产生歧义，这无疑增加了程序开发的复杂性，为了避免这种问题的产生，Java 语言规定不能多继承类，但可以实现多接口。
[bookmark: 覆盖和重载有哪些区别]5. 覆盖和重载有哪些区别？
答：覆盖和重载的区别如下：
· 覆盖（Override）是指子类对父类方法的一种重写，只能比父类抛出更少的异常，访问权限不能比父类的小，被覆盖的方法不能是 private，否则只是在子类中重新定义了一个方法；
· 重载（Overload）表示同一个类中可以有多个名称相同的方法，但这些方法的参数列表各不相同。
[bookmark: 以下不属于重载特性的是]6. 以下不属于重载特性的是？
A：方法的参数类型不同
B：方法的返回值不同
C：方法的参数个数不同
D：方法的参数顺序不同
答：B
[bookmark: 为什么方法不能根据返回类型来区分重载]7. 为什么方法不能根据返回类型来区分重载？
答：因为在方法调用时，如果不指定类型信息，编译器就不知道你要调用哪个方法了。比如，以下代码：
float max(int x,int y);
int max(int x,int y);
// 方法调用
max(1,2);
因为 max(1,2) 没有指定返回值，编译器就不知道要调用哪个方法了。
[bookmark: 构造方法有哪些特征]8. 构造方法有哪些特征？
答：构造方法的特征如下：
· 构造方法必须与类名相同；
· 构造方法没有返回类型（void 也不能有）；
· 构造方法不能被继承、覆盖、直接调用；
· 类定义时提供了默认的无参构造方法；
· 构造方法可以私有，外部无法使用私有构造方法创建对象。
[bookmark: 构造函数能不能被覆盖能不能被重载]9. 构造函数能不能被覆盖？能不能被重载？
答：构造函数可以重载，但不能覆盖。
[bookmark: 以下说法正确的是]10. 以下说法正确的是？
A：类中的构造方法不能忽略
B：构造方法可以作为普通方法被调用
C：构造方法在对象被 new 时被调用
D：一个类只能有一个构造方法
答：C
[bookmark: 以下程序执行的结果是]11. 以下程序执行的结果是？
class ExecTest {
 public static void main(String[] args) {
 Son son = new Son();
 }
}
class Parent{
 {
 System.out.print("1");
 }
 static{
 System.out.print("2");
 }
 public Parent(){
 System.out.print("3");
 }
}
class Son extends Parent{
 {
 System.out.print("4");
 }
 static{
 System.out.print("5");
 }
 public Son(){
 System.out.print("6");
 }
}
答：打印的结果是：251346
加载顺序如下：
· 执行父类的静态成员；
· 执行子类的静态成员；
· 父类的实例成员和实例初始化；
· 执行父类构造方法；
· 子类的实例成员和实例初始化；
· 子类构造方法。
[bookmark: 以下程序执行的结果是-1]12. 以下程序执行的结果是？
class A {
 public int x = 0;
 public static int y = 0;
 public void m() {
 System.out.print("A");
 }
}
class B extends A {
 public int x = 1;
 public static int y = 2;
 public void m() {
 System.out.print("B");
 }
 public static void main(String[] args) {
 A myClass = new B();
 System.out.print(myClass.x);
 System.out.print(myClass.y);
 myClass.m();
 }
}
答：打印的结果是：00B
题目解析：在 Java 语言中，变量不能被重写。
[bookmark: 以下程序执行的结果是-2]13. 以下程序执行的结果是？
class A {
 public void m(A a) {
 System.out.println("AA");
 }
 public void m(D d) {
 System.out.println("AD");
 }
}
class B extends A {
 @Override
 public void m(A a) {
 System.out.println("BA");
 }
 public void m(B b) {
 System.out.println("BD");
 }
 public static void main(String[] args) {
 A a = new B();
 B b = new B();
 C c = new C();
 D d = new D();
 a.m(a);
 a.m(b);
 a.m(c);
 a.m(d);
 }
}
class C extends B{}
class D extends B{}
答：打印结果如下。
BA
BA
BA
AD
题目解析：
· 第一个 BA：因为 A 的 m() 方法，被子类 B 重写了，所以输出是：BA；
· 第二个 BA：因为 B 是 A 的子类，当调用父类 m() 方法时，发现 m() 方法被 B 类重写了，所以会调用 B 中的 m() 方法，输出就是：BA；
· 第三个 BA：因为 C 是 B 的子类，会直接调用 B 的 m() 方法，所以输出就是：BA；
· 第四个 AD：因为 D 是 A 的子类，所以会调用 A 的 m() 方法，所以输出就是：AD。
[bookmark: java-中的-this-和-super-有哪些区别]14. Java 中的 this 和 super 有哪些区别？
答：this 和 super 都是 Java 中的关键字，起指代作用，在构造方法中必须出现在第一行，它们的区别如下。
· 基础概念：this 是访问本类实例属性或方法；super 是子类访问父类中的属性或方法。
· 查找范围：this 先查本类，没有的话再查父类；super 直接访问父类。
· 使用：this 单独使用时，表示当前对象；super 在子类覆盖父类方法时，访问父类同名方法。
[bookmark: 在静态方法中可以使用-this-或-super-吗为什么]15. 在静态方法中可以使用 this 或 super 吗？为什么？
答：在静态方法中不能使用 this 或 super，因为 this 和 super 指代的都是需要被创建出来的对象，而静态方法在类加载的时候就已经创建了，所以没办法在静态方法中使用 this 或 super。
[bookmark: 静态方法的使用需要注意哪些问题]16. 静态方法的使用需要注意哪些问题？
答：静态方法的使用需要注意以下两个问题：
· 静态方法中不能使用实例成员变量和实例方法；
· 静态方法中不能使用 this 和 super。
[bookmark: final-修饰符的作用有哪些]17. final 修饰符的作用有哪些？
答：final 修饰符作用如下：
· 被 final 修饰的类不能被继承；
· 被 final 修饰的方法不能被重写；
· 被 final 修饰的变量不能被修改。
[bookmark: 覆盖-equals-方法的时候需要遵守哪些规则]18. 覆盖 equals() 方法的时候需要遵守哪些规则？
答：Oracle 官方的文档对于 equals() 重写制定的规则如下。
· 自反性：对于任意非空的引用值 x，x.equals(x) 返回值为真。
· 对称性：对于任意非空的引用值 x 和 y，x.equals(y) 必须和 y.equals(x) 返回相同的结果。
· 传递性：对于任意的非空引用值 x、y 和 z，如果 x.equals(y) 返回值为真，y.equals(z) 返回值也为真，那么 x.equals(z) 也必须返回值为真。
· 一致性：对于任意非空的引用值 x 和 y，无论调用 x.equals(y) 多少次，都要返回相同的结果。在比较的过程中，对象中的数据不能被修改。
· 对于任意的非空引用值 x，x.equals(null) 必须返回假。
此题目不要求记忆，能知道大概即可，属于加分项题目。
[bookmark: 在-object-中-notify-和-notifyall-方法有什么区别]19. 在 Object 中 notify() 和 notifyAll() 方法有什么区别？
答：notify() 方法随机唤醒一个等待的线程，而 notifyAll() 方法将唤醒所有在等待的线程。
[bookmark: 如何使用-clone-方法]20. 如何使用 clone() 方法？
答：如果是同一个类中使用的话，只需要实现 Cloneable 接口，定义或者处理 CloneNotSupportedException 异常即可，请参考以下代码：
class CloneTest implements Cloneable {
 int num;
 public static void main(String[] args) throws CloneNotSupportedException {
 CloneTest ct = new CloneTest();
 ct.num = 666;
 System.out.println(ct.num);
 CloneTest ct2 = (CloneTest) ct.clone();
 System.out.println(ct2.num);
 }
}
如果非内部类调用 clone() 的话，需要重写 clone() 方法，请参考以下代码：
class CloneTest implements Cloneable {
 int num;
 public static void main(String[] args) throws CloneNotSupportedException {
 CloneTest ct = new CloneTest();
 ct.num = 666;
 System.out.println(ct.num);
 CloneTest ct2 = (CloneTest) ct.clone();
 System.out.println(ct2.num);
 }
 @Override
 protected Object clone() throws CloneNotSupportedException {
 return super.clone();
 }
}
public class CloneTest2 {
 public static void main(String[] args) throws CloneNotSupportedException {
 CloneTest ct = new CloneTest();
 ct.num = 666;
 System.out.println(ct.num);
 CloneTest ct2 = (CloneTest) ct.clone();
 System.out.println(ct2.num);
 }
}
[bookmark: 总结]总结
本文我们学习了类的基础用法，类引用：import 和 import static，访问修饰符的作用，构造函数和继承的特点以及使用技巧等，通过这些内容让我们对整个 Java 程序的组成，有了更加清晰直观的印象。
点击此处下载本讲源码
[bookmark: 更多资源下载交流请加微信morstrong加入永久会员网盘更新更快捷]更多资源下载交流请加微信：Morstrong,加入永久会员,网盘更新更快捷！
[bookmark: 本资源由微信公众号光明顶一号提供支持]本资源由微信公众号：光明顶一号，提供支持
